Bradyrhizobium + Azospirillumna cultura da soja

Crédito Shutterstock

Publicado em 14 de junho de 2017 às 07h54

Última atualização em 14 de junho de 2017 às 07h54

Acompanhe tudo sobre Adubação, Cana-de-açúcar, Hormônio, Inoculação, Nitrogênio, Traça, Trigo e muito mais!

Lucas Guilherme Bulegon

Doutorando em Agronomia – Universidade Estadual do Oeste do Paraná (Unioeste)

Vandeir Francisco Guimarães

Professor da Unioeste

Perivaldo Mateus Conrado

Graduando em Agronomia ” Universidade Estadual do Centro-Oeste (Unicentro)

Leandro Rampim

Professor da Unicentro

rampimleandro@yahoo.com.br

Crédito Shutterstock
Crédito Shutterstock

O crescimento da produção e o aumento da capacidade da soja estão diretamente ligados aos avanços científicos e à disponibilização de tecnologias ao setor produtivo. Hungria et al. (2001) constataram a importância do melhoramento genético associado à seleção de estirpes de bactérias fixadoras de nitrogênio (BFN), fornecendo nitrogênio às plantas de soja. O nitrogênio (N) é responsável pelo acréscimo da produtividade, teor de proteína das sementes e adequado desenvolvimento da cultura de soja.

No passado para se alcançar elevada produtividade na cultura da soja utilizavam-se fertilizantes minerais, aumentando os custos de produção e ocasionando maiores impactos ambientais (Hungria et al., 2001), sendo necessário elevada quantidade de nitrogênio.

Após a utilização do processo de FBN com estirpes responsivas à cultura da soja, no Brasil, é possível ser cultivada sem uso de nitrogênio na adubação mineral, aumentando lucratividade dos produtores brasileiros.

Para alcançar tais vantagens, é realizada a inoculação das sementes, processo no qual o produto inoculante (líquido ou turfoso, contendo bactérias) é misturado às sementes de forma homogênea, que, após secar, fica aderido às sementes, que são utilizadas para semeadura da cultura da soja.

Inoculação-da-raiz-da-soja-Crédito-Mariângela-Hungria1
Inoculação-da-raiz-da-soja-Crédito-Mariângela-Hungria1

Entenda melhor

Atualmente, as bactérias diazotróficas que intensificam a produção de soja pertence ao gênero Bradyrhizobium, que são microrganismos que infectam a planta formando naturalmente nódulos em suas raízes, possuindo capacidade de aproveitar nitrogênio atmosférico (N2), que não é utilizado pelas plantas (disponível no ar que está nos poros formados pela estruturação das partículas no solo), transformando-o em forma disponível à soja. Esse processo pode suprir toda a necessidade de N da planta, dispensando a adubação mineral.

O uso de inoculante com bactérias fixadoras de nitrogênio da espécie B. japonicum é, atualmente, uma tecnologia indispensável para a cultura da soja. A eficiência desses microrganismos tem possibilitado a obtenção de altos rendimentos de grãos da cultura, sem a necessidade de aplicação de nitrogênio mineral (Hungria et al., 2010; Zilli et al., 2010).

No Brasil, as taxas de FBN, para a cultura da soja, variam entre 109 e 250 kg ha-1 de N, o que representa de 70 a 85% do N total acumulado pelas plantas (Embrapa Soja, 2011).

Existem relatos sobre diminuição da eficiência de nodulação sobre adubação nitrogenada. Hungria et al. (2000) observaram que a adição de 20 kg de N ha-1 na semeadura resultou em diminuição de 14% na nodulação e queda na produtividade de 147 kg de grãos ha-1.

Simbiose

O Bradyrhizobium japonicum associa-se com a soja por meio de simbiose. Esse processo é iniciado pela liberação de exsudatos radiculares, possibilitando atração quimiotáxica das bactérias. A associação acontece nos primórdios dos pelos radiculares, culminando na formação de nódulos. O principal fator demandado é o maior consumo de energia da planta, estimado em torno de 20% (Faganet al., 2007).

No entanto, para que isso ocorra vários fatores têm interferência direta de hormônios, auxiliando a nodulação. Os hormônios vegetais são de fundamental importância, tendo nos níveis de auxinas, citocininas e etileno efeito regulatório pronunciado na divisão e expansão celular (Fei e Vessey, 2004), e a auxina e citocinina efeito direto sobre o desenvolvimento do nódulo (Caetano-Anollés, 1997).

O uso de inoculante com bactérias fixadoras de nitrogênio é indispensável na soja - CréditoShutterstock
O uso de inoculante com bactérias fixadoras de nitrogênio é indispensável na soja – CréditoShutterstock

Azospirillum

Neste contexto, bactérias diazotróficas do gênero Azospirillum têm sido bastante estudadas, com resultados positivos no desenvolvimento de plantas e produtividade de grãos, inicialmente em gramíneas como: milho, trigo, cana-de-açúcar e até mesmo forrageiras.

Porém, recentemente tem-se estudado também a associação dos dois gêneros diferentes de FBN no cultivo da soja, sendo realizada a associação de Bradyrhizobium e Azospirillumpor meio de inoculação conjunta na cultura da soja, considerada como coinoculação.

 As bactérias Azospirillum, além da FBN, podem produzir compostos promotores de crescimento ou estimular a produção endógena da planta desses compostos (Perriget al., 2007), podendo proliferar na superfície das raízes e penetrar no vegetal.

Dentre os compostos liberados por estes microrganismos tem-se auxina ácido 3-indolacético (AIA), ácido giberélico e citocininas. Essa interação entre A. brasiliense e o status hormonal causa alterações no sistema radicular, como incrementos no comprimento e volume das raízes e maior formação de pelos radiculares, contribuindo para elevar o acúmulo de biomassa na parte aérea, além da produtividade (Cassánet al., 2009; Dartora et al., 2013; Rodrigues et al., 2014).

Mais produtividade

O aumento da quantidade destes compostos promotores de crescimento pode auxiliar no desenvolvimento e aumento de produtividade das plantas de soja (Bulegonet al., 2016b), pois tem-se observado sistemas radiculares mais desenvolvidos em plantas de soja que receberam inoculação nas sementes com Bradyrhizobium japonicum e Azospirillum brasilense (Bárbaro et al., 2009).

Neste contexto, plantas de soja com maior nodulação apresentam valores mais elevados de compostos promotores de crescimento vegetal, pois auxinas e citocininas elevam o desempenho dos nódulos (Fei e Vessey, 2004).

Grafico 1 Coinoculação garante maiores produtividades
Coinoculação garante maiores produtividades

Grafico 2 Coinoculação garante maiores produtividades Grafico 3 Coinoculação garante maiores produtividades Grafico 4 Coinoculação garante maiores produtividades

Essa matéria completa você encontra na edição de junho 2017 da revista Campo & Negócios Grãos. Adquira já a sua para leitura integral.

Participe do Nosso Canal no WhatsApp

Receba as principais atualizações e novidades do agronegócio brasileiro.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Pesquisar

Últimas publicações

1

Novas variedades precoces de laranja aliam produtividade e qualidade do suco

2

Aplicação aérea de defensivos agrícolas: é mais vantajoso contratar o serviço ou investir em um drone de pulverização?

3

Conacredi Road Show 2025: Carolina Vergeti conduz discussão sobre riscos no agro em Cuiabá

4

Gowan na Hortitec 2025: onde ciência, propósito e resultado se encontram no campo

5

Feltrin na Hortitec 2025: portfólio renovado e aposta em tecnologia

Assine a Revista Campo & Negócios

Tenha acesso a conteúdos exclusivos e de alta qualidade sobre o agronegócio.

Publicações relacionadas

Arquivo

Congresso Brasileiro de Soja 2025 debaterá 100 anos de soja no Brasil vislumbrando o amanhã

"Doenças da Cultura do Gergelim" lançado em Sorriso (MT)

Livro 'Doenças da Cultura do Gergelim' traz conhecimento inédito para produtores

Inoculação da soja

Inoculação com Bactérias Promotoras de Crescimento de Plantas

Foto do Solution Day

Solution Day: inovação, treinamento e resultados reais no agro